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This work investigates phase separation of a monodisperse gas of inelastically colliding hard disks confined
in a two-dimensional annulus, the inner circle of which represents a “thermal wall.” When described by
granular hydrodynamic equations, the basic steady state of this system is an azimuthally symmetric state of
increased particle density at the exterior circle of the annulus. When the inelastic energy loss is sufficiently
large, hydrodynamics predicts spontaneous symmetry breaking of the annular state, analogous to the van der
Waals–like phase separation phenomenon previously found in a driven granular gas in rectangular geometry. At
a fixed aspect ratio of the annulus, the phase separation involves a “spinodal interval� of particle area fractions,
where the gas has negative compressibility in the azimuthal direction. The heat conduction in the azimuthal
direction tends to suppress the instability, as corroborated by a marginal stability analysis of the basic steady
state with respect to small perturbations. To test and complement our theoretical predictions we performed
event-driven molecular dynamics �MD� simulations of this system. We clearly identify the transition to phase
separated states in the MD simulations, despite large fluctuations present, by measuring the probability distri-
bution of the amplitude of the fundamental Fourier mode of the azimuthal spectrum of the particle density. We
find that the instability region, predicted from hydrodynamics, is always located within the phase separation
region observed in the MD simulations. This implies the presence of a binodal �coexistence� region, where the
annular state is metastable. The phase separation persists when the driving and elastic walls are interchanged,
and also when the elastic wall is replaced by weakly inelastic one.
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I. INTRODUCTION

Flows of granular materials are ubiquitous in nature and
technology �1�. Examples are numerous and range from Sat-
urn’s rings to powder processing. Being dissipative and
therefore intrinsically far from thermal equilibrium, granular
flows exhibit a plethora of pattern-forming instabilities �2,3�.
In spite of a surge of recent interest in granular flows, their
quantitative modeling remains challenging, and the pattern-
forming instabilities provide sensitive tests of the models.
This work focuses on the simple model of rapid granular
flows, also referred to as granular gases: large assemblies of
inelastically colliding hard spheres �4–9�. In the simplest
version of this model the only dissipative effect taken into
account is a reduction in the relative normal velocity of the
two colliding particles, modeled by the coefficient of normal
restitution �see below�. Under some additional assumptions a
hydrodynamic description of granular gases becomes pos-
sible. The molecular chaos assumption allows for a descrip-
tion in terms of the Boltzmann or Enskog equations, properly
generalized to account for the inelasticity of particle colli-
sions, followed by a systematic derivation of hydrodynamic
equations �10–12�. For inhomogeneous �and/or unsteady�
flows hydrodynamics demands scale separation: the mean
free path of the particles �the mean time between two con-
secutive collisions� must be much less than any characteristic
length �time� scale that the hydrodynamic theory attempts to
describe. The implications of these conditions can be usually
seen only a posteriori, after the hydrodynamic problem in
question is solved, and the hydrodynamic length and time
scales are determined. We will restrict ourselves in this work

to nearly elastic collisions and moderate gas densities where,
based on previous studies, hydrodynamics is expected to be
an accurate leading order theory �4–9�. These assumptions
allow for a detailed quantitative study �and prediction� of a
variety of pattern-formation phenomena in granular gases.
One of these phenomena is the phase-separation instability,
first predicted in Ref. �13� and further investigated in Refs.
�14–19�. This instability arises already in a very simple, in-
deed prototypical setting: a monodisperse granular gas at
zero gravity confined in a rectangular box, one of the walls
of which is a “thermal” wall. The basic state of this system is
the stripe state. In the hydrodynamic language it represents a
laterally uniform stripe of increased particle density at the
wall opposite to the driving wall. The stripe state was ob-
served in experiment �20�, and this and similar settings have
served for testing the validity of quantitative modeling
�21–23�. It turns out that �i� within a “spinodal” interval of
area fractions and �ii� if the system is sufficiently wide in the
lateral direction, the stripe state is unstable with respect to
small density perturbations in the lateral direction �13,15,16�.
Within a broader “binodal� �or coexistence� interval the
stripe state is stable to small perturbations, but unstable to
sufficiently large ones �14,19�. In both cases the stripe gives
way, usually via a coarsening process, to coexistence of
dense and dilute regions of the granulate �granular “droplets”
and “bubbles”� along the wall opposite to the driving wall
�14,17,19�. This far-from-equilibrium phase-separation phe-
nomenon is strikingly similar to a gas-liquid transition as
described by the classical van der Waals model, except for
large fluctuations observed in a broad region of aspect ratios
around the instability threshold �18�. The large fluctuations
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have not yet received a theoretical explanation.
This work addresses a phase-separation process in a dif-

ferent geometry. We will deal here with an assembly of hard
disks at zero gravity, colliding inelastically inside a two-
dimensional annulus. The interior wall of the annulus drives
the granulate into a nonequilibrium steady state with a �hy-
drodynamically� zero mean flow. Particle collisions with the
exterior wall are assumed elastic. The basic steady state of
this system, as predicted by hydrodynamics, is the annular
state: an azimuthally symmetric state of increased particle
density at the exterior wall. The phase-separation instability
manifests itself here in the appearance of dense clusters with
broken azimuthal symmetry along the exterior wall. Our
main objectives are to characterize the instability and com-
pute the phase diagram by using granular hydrodynamics �or,
more precisely, granular hydrostatics; see below� and event-
driven molecular dynamics simulations. By focusing on the
annular geometry, we hope to motivate experimental studies
of the granular phase separation which may be advantageous
in this geometry. The annular setting avoids lateral side walls
�with an unnecessary and unaccounted for energy loss of the
particles�. Furthermore, driving can be implemented here by
a rapid rotation of the �slightly eccentric and possibly rough�
interior circle.

We organized the paper as follows. Section 2 deals with a
hydrodynamic description of the annular state of the gas. As
we will be dealing only with states with a zero mean flow,
we will call the corresponding equations hydrostatic. A mar-
ginal stability analysis predicts a spontaneous symmetry
breaking of the annular state. We compute the marginal sta-
bility curves and compare them to the borders of the spinodal
�negative compressibility� interval of the system. In Sec. III
we report event-driven molecular dynamics �MD� simula-
tions of this system and compare the simulation results with
the hydrostatic theory. In Sec. IV we discuss some modifica-
tions of the model, while Sec. V contains a summary of our
results.

II. PARTICLES IN AN ANNULUS AND GRANULAR
HYDROSTATICS

A. The density equation

Let N hard disks of diameter d and mass m=1 move, at
zero gravity, inside an annulus of aspect ratio �=Rext /Rint,
where Rext is the exterior radius and Rint is the interior one.
The disks undergo inelastic collisions with a constant coef-
ficient of normal restitution �. For simplicity, we neglect the
rotational degree of freedom of the particles. The �driving�
interior wall is modeled by a thermal wall kept at tempera-
ture T0, whereas particle collisions with the exterior wall are
considered elastic. The energy transferred from the thermal
wall to the granulate dissipates in the particle inelastic colli-
sions, and we assume that the system reaches a �nonequilib-
rium� steady state with a zero mean flow. We restrict our-
selves to the nearly elastic limit by assuming a restitution
coefficient close to, but less than, unity: 1−��1. This al-
lows us to safely use granular hydrodynamics �8�. For a zero-
mean-flow steady state the continuity equation is obeyed
trivially, while the momentum and energy equations yield

two hydrostatic relations:

� · q�r� + I = 0, p = const, �1�

where q is the local heat flux, I is the energy loss term due to
inelastic collisions, and P= P�n ,T� is the gas pressure, which
depends on the number density n�r� and granular tempera-
ture T�r�. We adopt the classical Fourier relation for the heat
flux q�r�=−��T�r� �where � is the thermal conductivity�,
omitting a density gradient term. In the dilute limit this term
was derived in Ref. �11�. It can be neglected in the nearly
elastic limit which is assumed throughout this paper.

The momentum and energy balance equations read

� · �� � T�r�� = I, p = const. �2�

To get a closed formulation, we need constitutive relations
for p�n ,T�, ��n ,T�, and I�n ,T�. We will employ the widely
used semiempiric transport coefficients derived by Jenkins
and Richman �24� for moderate densities:

� =
2dnT1/2G̃

�1/2 �1 +
9�

16 �1 +
2

3G̃
�2� ,

I =
8�1 − ��nT3/2G̃

d	�
, �3�

and the equation of state first proposed by Carnahan and
Starling �25�,

p = nT�1 + 2G̃� , �4�

where G̃=��1−7� /16� / �1−��2 and �=n��d2 /4� is the solid
fraction. Let us rescale the radial coordinate by Rint and in-
troduce the rescaled inverse density Z�r ,��=nc /n�r ,��,
where nc=2/ �	3d2� is the hexagonal close packing density.
The rescaled radial coordinate r now changes between 1 and
�
Rext /Rint, the aspect ratio of the annulus. As in the pre-
vious work �16�, Eqs. �2�, �4�, and �3� can be transformed
into a single equation for the inverse density Z�r�:

� · �F�Z� � Z� = �Q�Z� , �5�

where

F�Z� = F1�Z�F2�Z� ,

Q�Z� =
6

�

Z1/2G
�1 + 2G�3/2 ,

F1�Z� =
G�Z��1 + �9�/16��1 + 2/�3G��2�

Z1/2�1 + 2G�5/2 ,

F2�Z� = 1 + 2G +
�

	3

Z�Z + �/�16	3��
�Z − �/�2	3��3

,
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G�Z� =
�

2	3

�Z − 7�/�32	3��
�Z − �/�2	3��2

. �6�

The dimensionless parameter �
�2� /3��1−���Rint /d�2 is
the hydrodynamic inelastic loss parameter. The boundary
conditions for Eq. �5� are

�Z�1,��/�� = 0 and �nZ��,�� = 0. �7�

The first of these follows from the constancy of the tempera-
ture at the �thermal� interior wall which, in view of the con-
stancy of the pressure in a steady state, becomes constancy
of the density. The second condition demands a zero normal
component of the heat flux at the elastic wall. Finally, work-
ing with a fixed number of particles, we demand the normal-
ization condition

�
0

2� �
1

�

Z−1�r,��r dr d� = �f��2 − 1� , �8�

where

f =
N

�ncRint
2 ��2 − 1�

is the area fraction of the grains in the annulus. Equations
�5�–�8� determine all possible steady state density profiles,
governed by three dimensionless parameters: f , �, and �.

B. Annular state

The simplest solution of the density equation �5� is azi-
muthally symmetric �� independent�: Z=z�r�. Henceforth we
refer to this basic state of the system as the annular state. It
is determined by the following equations:

�rF�z�z��� = r�Q�z�, z���� = 0,

�
1

�

z−1r dr = ��2 − 1�f/2, �9�

where the primes denote r derivatives. In order to solve the
second-order equation �9� numerically, one can prescribe the
inverse density at the elastic wall, z�
z���. Combined with
the no-flux condition at r=�, this condition defines a
Cauchy problem for z�r� �16,17�. Solving the Cauchy prob-
lem, one can compute the corresponding value of f from the
normalization condition in Eq. �9�. At fixed � and �, there is
a one-to-one relation between z� and f . Therefore, an alter-
native parametrization of the annular state is given by the
scaled numbers z�, �, and �. The same is true for the mar-
ginal stability analysis performed in the next subsection.

Figure 1 depicts an example of annular state that we
found numerically. One can see that the gas density increases
with the radial coordinate, as expected from the temperature
decrease via inelastic losses, combined with the constancy of
the pressure throughout the system. The hydrodynamic den-
sity profile agrees well with the one found in our MD simu-
lations �see below�.

C. Phase separation

Mathematically, phase separation manifests itself in the
existence of additional solutions to Eqs. �5�–�8� in some re-
gion of the parameter space f , �, and �. These additional
solutions are not azimuthally symmetric. Solving Eqs.
�5�–�8� for fully two-dimensional solutions is not easy �13�.
One class of such solutions, however, bifurcate continuously
from the annular state, so they can be found by linearizing
Eq. �5�, as in rectangular geometry �13,16�. In the framework
of a time-dependent hydrodynamic formulation, this analysis
corresponds to a marginal stability analysis which involves a
small perturbation to the annular state. For a single azimuthal
mode �sin�k�� �where k is integer� we can write Z�r ,��
=z�r�+	
�r�sin�k��, where 
�r� is a smooth function, and
	�1 a small parameter. Substituting this into Eq. �5� and
linearizing the resulting equation yields a k-dependent
second-order differential equation for the function ��r�

F�Z�r��
�r�:

�k� +
1

r
�k� − � k2

r2 +
�Q��Z�
F�Z� ��k = 0. �10�

This equation is complemented by the boundary conditions

��1� = 0 and ����� = 0. �11�

For fixed values of the scaled parameters f , �, and �, Eqs.
�10� and �11� determine a linear eigenvalue problem for k.
Solving this eigenvalue problem numerically, one obtains the
marginal stability hypersurface k=k�f ,� ,��. For fixed �
and �, we obtain a marginal stability curve k=k�f�. Ex-
amples of such curves, for a fixed � and three different � are
shown in Fig. 2. Each k=k�f� curve has a maximum kmax, so
that a density modulation with the azimuthal wave number
larger than kmax is stable. As expected, the instability interval
is the largest for the fundamental mode k=1. The inset in
Fig. 2 shows the dependence of kmax on �1/2. The straight
line shows that, at large �, kmax��1/2, as in rectangular
geometry �16�.

FIG. 1. Normalized density profiles obtained from the MD
simulations �the dots� and hydrostatics �the line� for �=2, �
=81.09, and f =0.356 �equivalently, z�=2.351�. The simulations
were carried out with N=1250 particles, �=0.92, and Rint=22.0.
Also shown is a typical snapshot of the system at the steady state as
observed in the MD simulation.
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Two-dimensional projections of the �f ,� ,��-phase dia-
gram at three different � are shown in Fig. 3 for the funda-
mental mode. The annular state is unstable in the region
bounded by the marginal stability curve, and stable else-
where. Therefore, the marginal stability analysis predicts loss
of stability of the annular state within a finite interval of f ,
that is at fmin�� ,�� f  fmax�� ,��.

The physical mechanism of this phase separation instabil-
ity is the negative compressibility of the granular gas in the
azimuthal direction, caused by the inelastic energy loss. To
clarify this point, let us compute the pressure of the annular
state, given by Eq. �4�. First we introduce a rescaled pressure
P= p / �ncT0� and, in view of the pressure constancy in the
annular state, compute it at the thermal wall, where T=T0 is
prescribed and z�1� is known from our numerical solution for
the annular state. We obtain

P�f ,�,�� =
1 + 2G„z�1�…

z�1�
.

The spinodal �negative compressibility� region is determined
by the necessary condition for the instability: ��P /�f��,�

0, whereas the borders of the spinodal region are defined
by ��P /�f��,�=0. Typical P�f� curves for a fixed � and
several different � are shown in Fig. 4. One can see that, at
sufficiently large �, the rescaled pressure P goes down with
an increase of f at an interval f1 f  f2. That is, the effec-
tive compressibility of the gas with respect to a redistribution
of the material in the azimuthal direction is negative on this
interval of area fractions. By joining the spinodal points f1
and �separately� f2 at different �, we can draw the spinodal
line for a fixed �. As � goes down, the spinodal interval
shrinks and eventually becomes a point at a critical point
�Pc , fc�, or ��c , fc� �where all the critical values are � de-
pendent�. For ��c P�f� monotonically increases and there
is no instability.

What is the relation between the spinodal interval �f1 , f2�
and the marginal stability interval �fmin, fmax�? These inter-
vals would coincide were the azimuthal wavelength of the
perturbation infinite �or, equivalently, k→0�, so that the azi-
muthal heat conduction would vanish. Of course, this is not
possible in annular geometry, where k�1. As a result, the
negative compressibility interval must include in itself the
marginal stability interval �fmin, fmax�. This is what our cal-
culations indeed show �see the inset of Fig. 3�. That is, a
negative compressibility is necessary, but not sufficient,
for instability, similarly to what was found in rectangular
geometry �16�.

Importantly, the instability region of the parameter space
is by no means not the whole region, the region where phase
separation is expected to occur. Indeed, in analogy to what

FIG. 2. Main graph: the marginal stability curves k=k�f� �where
k is an integer� for �=1.5 and �=104 �circles�, 5�104 �squares�,
and 105 �triangles�. For a given � the annular state is stable above
the respective curve and unstable below it, as indicated for �
=104. As � increases the marginal stability interval shrinks. Inset:
the dependence of kmax on �1/2. The straight line shows that, at
large �, kmax��1/2.

FIG. 3. Two-dimensional projections on the �� , f��2−1� /2�
plane of the phase diagram at �=1.5 �solid line�, 3 �dotted line�,
and 5 �dashed line�. The inset shows more clearly, for �=3, that the
marginal stability curve �the solid line� lies within the negative
compressibility region �bounded by the dashed line�.

FIG. 4. Scaled steady state granular pressure P versus the grain
area fraction f for �=1.5 and �=1.1�103 �dotted line�, 1.5
�103 �dash-dotted line�, 3.5�103 �dashed line�, and 5�104 �solid
line�. The inset shows a zoom-in for �=3.5�103. The borders f1

and f2 of the spinodal interval are determined from the condition
��P /�f��,�=0. The thick solid line encloses the spinodal balloon
where the effective azimuthal compressibility of the gas is negative.
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happens in rectangular geometry �14,19�, phase separation is
also expected in a binodal �or coexistence� region of the area
fractions, where the annular state is stable to small perturba-
tions, but unstable to sufficiently large ones. The whole re-
gion of phase separation should be larger than the instability
region, and it should of course include the instability region.
Though we did not attempt to determine the binodal region
of the system from the hydrostatic equations �this task has
not been accomplished yet even for rectangular geometry,
except in the close vicinity of the critical point �19��, we
determined the binodal region from our MD simulations re-
ported in the next section.

III. MD SIMULATIONS

A. Method

We performed a series of event-driven MD simulations of
this system using an algorithm described by Pöschel and
Schwager �26�. Simulations involved N hard disks of diam-
eter d=1 and mass m=1. After each collision of particle i
with particle j, their relative velocity is updated according to

v� ij� = v� ij − �1 + ���v� ij · r̂ij�r̂ij , �12�

where v� ij is the precollisional relative velocity, and r̂ij

r�ij / r�ij is a unit vector connecting the centers of the two
particles. Particle collisions with the exterior wall r=Rext are
assumed elastic. The interior wall is kept at constant tem-
perature T0 that we set to unity. This is implemented as fol-
lows. When a particle collides with the wall it forgets its
velocity and picks up a new one from a proper Maxwellian
distribution with temperature T0 �see, e.g., Ref. �26�, pp.
173–177, for detail�. The time scale is therefore d�m /T0�1/2

=1. The initial condition is a uniform distribution of non-
overlapping particles inside the annular box. Their initial ve-
locities are taken randomly from a Maxwellian distribution
at temperature T0=1. In all simulations the coefficient of
normal restitution �=0.92 and the interior radius Rint /d
=22.0 were fixed, whereas the number of particles 527�N
�7800 and the aspect ratio 1.5���6 were varied. In terms
of the three scaled hydrodynamic parameters the heat loss
parameter �=81.09 was fixed whereas f and � varied.

To compare the simulation results with predictions of our
hydrostatic theory, all the measurements were performed
once the system reached a steady state. This was monitored
by the evolution of the total kinetic energy �1/2��i=1

N v� i
2,

which first decays and then, on the average, stays constant.

B. Steady states

Typical steady state snapshots of the system, observed in
our MD simulation, are displayed in Fig. 5. Figure 5�a�
shows a dilute state where the radial density inhomogeneity,
though actually present, is not visible by naked eye. Figures
5�b� and 5�c� do exhibit a pronounced radial density inhomo-
geneity. Apart from visible density fluctuations, Figs. 5�a�
and 5�b� correspond to annular states. Figure 5�c� depicts a
broken-symmetry �phase-separated� state. When an annular
state is observed, its density profile agrees well with the so-

lution of the hydrostatic equations �5�–�8�. A typical example
of such a comparison is shown in Fig. 1.

Let us fix the aspect ratio � of the annulus at not too
small a value and vary the number of particles N. First, what
happens on a qualitative level? The simulations show that, at
small N, dilute annular states, similar to snapshot �a� in Fig.
5, are observed. As N increases, broken-symmetric states
start to appear. Well within the unstable region, found from
hydrodynamics, a high-density cluster appears, like the one
shown in Fig. 5�c�, and performs an erratic motion along the
exterior wall. As N is increased still further, well beyond the
high-f branch of the unstable region, an annular state reap-
pears, as in Fig. 5�b�. This time, however, the annular state is
denser, while its local structure varies from solidlike �with
imperfections such as voids and line defects� to liquidlike.

To characterize the spatiotemporal behavior of the granu-
late at a steady state, we followed the position of the center
of mass �c.m.� of the granulate. Several examples of the c.m.
trajectories are displayed in Fig. 6. Here Figs. 6�a� and 6�b�
correspond, in the hydrodynamic language, to annular states.
There are, however, significant fluctuations of the c.m.
around the center of the annulus. These fluctuations are, of
course, not accounted for by hydrodynamic theory. In Fig.
6�b�, where the dense cluster develops, the fluctuations are
much weaker than in Fig. 6�a�. More interesting are the cases
of Figs. 6�c� and 6�d�. They correspond to broken-symmetry
states: well within the phase-separation region of the param-
eter space �Fig. 6�c�� and close to the phase separation border
�Fig. 6�d��. The c.m. trajectory in Fig. 6�c� shows that the
granular “droplet” performs random motion in the azimuthal
direction, staying close to the exterior wall. This is in con-
trast with Fig. 6�d�, where fluctuations are strong both in the
azimuthal and in the radial directions. Following the actual
snapshots of the simulation, one observes here a very com-
plicated motion of the droplet, as well as its dissolution into
more droplets, mergers of the droplets, etc. Therefore, as in
the case of granular phase separation in rectangular geometry
�18�, the granular phase separation in annular geometry is
accompanied by considerable spatiotemporal fluctuations. In
this situation a clear distinction between a phase-separated
state and an annular state, and a comparison between the MD
simulations and hydrodynamic theory, demand proper diag-
nostics. We found that such diagnostics are provided by the
azimuthal spectrum of the particle density and its probability
distribution.

C. Azimuthal density spectrum

Let us consider the �time-dependent� rescaled density
field ��r ,� , t�=n�r ,� , t� /nc �where r is rescaled to the inte-

FIG. 5. Typical steady state snapshots for N=1250 and �=6 �a�,
N=5267 and �=3 �b�, and N=6320 and �=6 �c�. �a� and �b�
correspond to annular states of the hydrostatic theory, whereas �c�
shows a broken-symmetry �phase-separated� state.
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rior wall radius as before�, and introduce the integrated field
�̂�� , t�:

�̂��,t� = �
1

�

��r,�,t�r dr . �13�

In a system of N particles, �̂�� , t� is normalized so that

�
0

2�

�̂��,t�d� =
N

ncRint
2 . �14�

Because of the periodicity in � the function �̂�� , t� can be
expanded in a Fourier series:

�̂��,t� = a0 + �
k=1

�

�ak�t�cos�k�� + bk�t�sin�k��� , �15�

where a0 is independent of time because of the normalization
condition �14�. We will work with the quantities

Ak
2�t� 
 ak

2�t� + bk
2�t�, k � 1. �16�

For the �deterministic� annular state one has Ak=0 for all k
�1, while for a symmetry-broken state Ak�0. The relative
quantities Ak

2�t� /a0
2 can serve as measures of the azimuthal

symmetry breaking. As is shown in Table I, A1
2�t� is usually

much larger �on the average� that the rest of Ak
2�t�. Therefore,

the quantity A1
2�t� /a0

2 is sufficient for our purposes.
Once the system relaxed to a steady state, we followed the

temporal evolution of the quantity A1
2 /a0

2. Typical results are
shown in the right column of Fig. 6. One observes that, for
annular states, this quantity is usually small, as in Figs. 6�a�
and 6�b�. For broken-symmetry states A1

2 is larger, and it
increases as one moves deeper into the phase separation re-
gion. �Notice that in Fig. 6 the averaged value of A1

2 /a0
2 in �c�

is larger than in �d�, which means that �c� is deeper in the
phase-separation region.� Another characteristic of A1

2�t� /a0
2

is the magnitude of fluctuations. One can notice that, in the
vicinity of the phase-separation border the fluctuations are
stronger �as in Fig. 6�d��.

All these properties are encoded in the probability distri-
bution P1 of the values of �A1 /a0�2: the ultimate tool of our
diagnostics. Figure 7 shows two series of measurements of
this quantity at different N: for �=3 and 5. By following the
position of the maximum of P1 we were able to sharply
discriminate between the annular states and phase-separated
states and therefore to locate the phase-separation border.
When the maximum of P1 occurs at the zero value of
�A1 /a0�2 �as in Figs. 7�a� and 7�d� and, respectively, Figs.
7�e� and 7�h��, an annular state is observed. On the contrary,
when the maximum of P1 occurs at a nonzero value of
�A1 /a0�2 �as in Figs. 7�b� and 7�c� and, respectively, Figs.
7�f� and 7�g��, a phase-separated state is observed. In each
case, the width of the probability distribution �measured, for
example, at the half maximum� yields a direct measure of the
magnitude of fluctuations. Near the phase-separation border,
strong fluctuations �that is, broader distributions� are ob-
served, as in Fig. 7�c�.

Using the position of the maximum of P1 as a criterion for
phase separation, we show, in Fig. 8, the �-f diagram ob-
tained from the MD simulations. The same figure also de-
picts the hydrostatic prediction of the instability region. One
can see that the instability region is located within the phase-
separation region, as expected.

IV. SOME MODIFICATIONS OF THE MODEL

We also investigated an alternative setting in which the
exterior wall is the driving wall, while the interior wall is
elastic. The corresponding hydrostatic problem is determined
by the same three scaled parameters f , �, and �, but the
boundary conditions must be changed accordingly. Here azi-
muthally symmetric clusters appear near the �elastic� interior
wall. Symmetry-breaking instability occurs here as well. We

FIG. 6. Typical steady state snapshots �left column� and the
temporal evolution of the c.m. �middle column� and of the squared
amplitude of the fundamental Fourier mode �right column�. The
temporal data are sampled each 150 collisions per particle. Each
row corresponds to one simulation with the indicated parameters.
The vertical scale of �a� and �b� was stretched for clarity.

TABLE I. Averaged squared relative amplitudes �Ak
2�t�� /a0

2 for
the first three modes k=1, 2, and 3. �a� N=2634, �=3; �b� N
=5267, �=4; �c� N=1000, �=2.25; and �d� N=1250, �=3.

k �a� �b� �c� �d�

1 0.66±0.05 0.39±0.04 0.30±0.08 0.77±0.05

2 0.04±0.02 0.05±0.02 0.07±0.01 0.28±0.09

3 0.03±0.02 0.03±0.03 0.02±0.02 0.11±0.08
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found very similar marginal stability curves here, but they
are narrower �as shown in Fig. 9� than those obtained for the
original setting.

Finally, we returned to our original setting and performed
several MD simulations, replacing the perfectly elastic exte-
rior wall by a weakly inelastic one. The inelastic particle
collisions with the exterior wall were modeled in the same
way as the inelastic collisions between particles. Typical re-

sults of these simulations are shown in Fig. 10. It can be seen
that, for the right choice of parameters, the phase separation
persists. This result is important for a possible experimental
test of our theory.

V. SUMMARY

We combined equations of granular hydrostatics and
event-driven MD simulations to investigate spontaneous
phase separation of a monodisperse gas of inelastically col-
liding hard disks in a two-dimensional annulus, the innerFIG. 7. Normalized probability distribution functions P1�A1

2 /a0
2�

for �=3 �left column� and 5 �right column� for different numbers
of particles.

FIG. 8. � - f phase diagram for �=81.09. The solid curve is
given by the granular hydrostatics: it shows the borders of the re-
gion where the annular state is unstable with respect to small per-
turbations. The filled symbols depict the parameters in which phase-
separated states are observed, whereas the hollow symbols show the
parameters at which annular states are observed. The dashed line is
an estimated binodal line of the system.

FIG. 9. Marginal stability lines for our main setting �solid line�
and for an alternative setting in which the thermal wall is at r
=Rext and the elastic wall is at r=Rint �dashed line�.

FIG. 10. Typical steady state snapshots �left column� and the
normalized probability distribution functions P1�A1

2 /a0
2� for an in-

elastic exterior wall, �wall=0.99 �right column�, for different num-
bers of particles.
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circle of which serves as a thermal wall. A marginal stability
analysis yields a region of the parameter space where the
annular state—the basic, azimuthally symmetric steady state
of the system—is unstable with respect to small perturba-
tions that break the azimuthal symmetry. The physics behind
the instability is negative effective compressibility of the gas
in the azimuthal direction, which results from the inelastic
energy loss. MD simulations of this system show phase sepa-
ration, but it is masked by large spatiotemporal fluctuations.
By measuring the probability distribution of the amplitude of
the fundamental Fourier mode of the azimuthal spectrum of
the particle density we have been able to clearly identify the
transition to phase-separated states in the MD simulations.
We have found that the instability region of the parameter
space, predicted from hydrostatics, is located within the
phase-separation region observed in the MD simulations.
This implies the presence of a binodal �coexistence� region,
where the annular state is metastable, similar to what was
found in rectangular geometry �14,19�. The instability per-

sists in an alternative setting �a driving exterior wall and an
elastic interior wall�, and also when the elastic wall is
replaced by a weakly inelastic one. We hope our results will
stimulate experimental work on the phase-separation
instability.
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